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THE BAYESIAN
APPROACH TO STATISTICS

ANTHONY O’HAGAN

INTRODUCTION

By far the most widely taught and used statisti-
cal methods in practice are those of the frequen-
tist school. The ideas of frequentist inference, as
set out in Chapter 5 of this book, rest on the
frequency definition of probability (Chapter 2),
and were developed in the first half of the 20th
century. This chapter concerns a radically differ-
ent approach to statistics, the Bayesian approach,
which depends instead on the subjective defini-
tion of probability (Chapter 3). In some respects,
Bayesian methods are older than frequentist ones,
having been the basis of very early statistical rea-
soning as far back as the 18th century. Bayesian
statistics as it is now understood, however, dates
back to the 1950s, with subsequent development
in the second half of the 20th century. Over that
time, the Bayesian approach has steadily gained
ground, and is now recognized as a legitimate al-
ternative to the frequentist approach.

This chapter is organized into three sections.
The first gives an outline of the Bayesian method.
The second section contrasts the Bayesian and
frequentist schools, linking their differences to
fundamental differences over the interpretation
of probability, and argues that the Bayesian ap-
proach is more consistent and reflects better

the true nature of scientific reasoning. The fi-
nal section addresses various features of modern
Bayesian methods that provide some explanation
for the rapid increase in their adoption since the
1980s.

BAYESIAN INFERENCE

We first present the basic procedures of Bayesian
inference.

Bayes’s Theorem and the Nature of Learning

Bayesian inference is a process of learning
from data. To give substance to this statement,
we need to identify who is doing the learning and
what they are learning about.

Terms and Notation

The person doing the learning is an individual
scientist, analyst, or decision maker who wishes
to learn from the data. Where we need to re-
fer to this person explicitly, we will call him or
her “You.” The choice of word emphasizes the
fact that Bayesian inference is concerned with
the knowledge of a particular person, and so is
intrinsically subjective, but the capital letter “Y”
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when discussing general principles distinguishes
this person from “you, the reader” and shows that
we are referring to an abstract or arbitrary person.

As with other approaches to statistics, the
object of analyzing the data is to make inferences
about some unknown parameters. It is conven-
tional to denote parameters by Greek letters, and
when discussing general principles we denote
them by θ . In context, θ may represent a single
parameter or more generally a collection of
parameters. The data are usually denoted by
Roman letters, and in general discussion we use
the symbol x. In Bayesian statistics, You use
the data x to learn about the parameters θ . Your
beliefs and knowledge about θ are updated in
this learning process.

We, therefore, need notation and terminology
to describe Your state of knowledge before and
after learning from the data. We refer to knowl-
edge before observing the data as prior infor-
mation, and to that obtaining after observing the
data as posterior information. The words “prior”
and “posterior” are relative to the data under
consideration.

The description of prior or posterior knowl-
edge in the Bayesian framework is a probabil-
ity distribution. Your prior distribution for θ is
denoted by f (θ ) and Your posterior distribution
by f (θ |x). For the purposes of this chapter, we
will take these to be probability density func-
tions, since in the great majority of applications
the parameters are continuous variables.1 Thus,
the state of knowledge after observing the data is
distinguished from that before observing the data
simply by conditioning on x.2

The prior distribution is a complete descrip-
tion of Your prior knowledge, in the sense we
can derive from it Your prior probability that θ
lies in any set of interest. Similarly, f (θ |x) is a
complete description of Your posterior informa-

1It is straightforward to adapt everything to deal with
discrete-valued parameters, but to do so here in any rigorous
way would make the notation and discussion unnecessarily
complex.
2Strictly, we should explicitly show Your prior information
as, say, I. Then, posterior information comprises both I and
the observed data x. In this more explicit notation, the prior
distribution would be f (θ |I) and the posterior distribution
f (θ |I,x). However, it is usual to suppress the prior informa-
tion to simplify the notation.

tion about θ . This conceptual description of the
prior distribution will suffice as we explore the
mechanics of Bayesian inference. We will con-
sider the prior information in more detail in the
section Prior Distributions.

Bayes’s Theorem

Bayes’s theorem (written “Bayes’ theorem”
by some and named after the 18th-century cler-
gyman and mathematician Thomas Bayes) is the
formula for deriving the posterior distribution. In
the form used in Bayesian statistics, the theorem
can be simply expressed as

f (θ |x) ∝ f (θ ) f (x |θ ). (6.1)

To understand this formula, first note that on
the left-hand side of (6.1) is the posterior den-
sity f (θ |x), whereas on the right-hand side is
the product of two terms, one of which is the
prior density f (θ ). The other term, f (x |θ ), is
the probability distribution for the data, con-
ditional on the parameter θ . This distribution
also appears in all other approaches to statistics,
and in particular in frequentist theory. When
thought of as a function of the unknown param-
eters θ (and for fixed data x), it is called the
likelihood function (or simply the likelihood);
see Chapter 5.

Note next that the left- and right-hand sides
of (6.1) are linked by the proportionality sym-
bol, “∝.” The theorem therefore says that the pos-
terior density is proportional to the product of
the prior density and the likelihood. We need a
proportionality symbol here rather than an equals
sign because the posterior density, like any den-
sity function, must have its integral (i.e., the area
under the curve) equal to 1. If we simply multiply
the prior density and the likelihood function, then
the result will not integrate to 1 (except by some
remote accident). Therefore, to obtain the poste-
rior density function we must scale the right-hand
side by multiplying it by a suitable constant to
make it integrate to 1 over the full range of pos-
sible values of θ . This is the meaning of propor-
tionality: The posterior density is the product of
the prior density and likelihood except for a con-
stant (in the sense of not depending on θ ) scaling
factor.
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Figure 6.1 Example of mobile phone usage.

NOTE: Solid line: prior density; dashed line: likelihood; dot-
dashed line: posterior density.

Learning

The way in which Bayes’s theorem operates
is best seen through examples. Suppose that You
are interested in the proportion of people in the
United Kingdom who have used a mobile phone
while driving in the last year. If we denote this
proportion by θ , then it can take any value in the
range 0 to 1.3 Suppose that we obtain data from
a survey of 100 people in the United Kingdom,
of whom 23 report having used a mobile phone
while driving last year. Figure 6.1 illustrates
the use of Bayes’s theorem in this case. The solid
line is Your prior distribution, which for this ex-
ample indicates a belief that θ would most prob-
ably be in the range 0.3 to 0.4 and is unlikely
to lie outside the range 0.2 to 0.5. The dashed
line is the likelihood, with the data indicating θ is
around the observed frequency of 0.23. The pos-
terior distribution is the dot-dashed line.

Bayes’s theorem multiplies the prior density
and likelihood. Where either of these is very
near zero, the product is near zero, so the poste-
rior density is negligible for θ < 0.15 (because
the prior is negligible there) or θ > 0.4 (because
the likelihood is negligible there). It covers a
narrower range, and so is more informative,
than either the prior or the likelihood. The pos-
terior reaches its maximum at θ = 0.264, which
represents a compromise between the prior den-

3Strictly, if N is the population of the United Kingdom, it
takes values 0, 1

N , 2
N , . . ., but N is large!

sity’s maximum at θ = 0.35 and the likelihood’s
maximum at θ = 0.23. Both the data and prior
information have a role in Bayesian inference,
and the posterior distribution synthesizes the
two sources of information. In this case, the
data are more informative than the prior distri-
bution, so this compromise yields a value closer
to the data estimate than the prior maximum.
We see this also in the fact that the posterior is
similar to the likelihood, although the prior in-
formation has had some influence in moving the
posterior toward larger θ values than the data
alone suggest.

This example illustrates very typical behavior
of Bayes’s theorem.

• The posterior distribution combines the in-
formation in both the prior distribution and
the likelihood. This typically results in the
posterior representing stronger information,
and supporting a narrower range of possi-
ble values for θ , than either of the separate
sources of information.

• The posterior distribution centers around a
value that is typically a compromise be-
tween the values that are well supported by
the prior and by the data separately.

• This compromise also reflects the relative
strengths of the prior information and data.
The posterior is generally more similar to,
and is centered nearer to the center of, the
stronger information source.

Figure 6.1 is an example of a triplot, in which
the prior, likelihood, and posterior are plotted to-
gether on a single graph. When there is just a sin-
gle unknown parameter, it is a powerful way to
see the operation of Bayes’s theorem. In practice,
however, statistical models nearly always have
many more parameters. Bayes’s theorem still op-
erates in the same way, but it is no longer so sim-
ple to visualize graphically.

Bayes’s theorem is the fundamental paradigm
for learning from experience, allowing You to
update Your prior information to Your posterior
information via the evidence in the data. Psychol-
ogists have studied how people actually process
information, and although we typically do not do
so as efficiently as Bayes’s theorem dictates, and
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are inclined to make some predictable kinds of
judgmental errors, it is clear that people do learn
from evidence in broadly this way.

Sequential Learning

We never stop learning. Learning is an on-
going process, and Bayes’s theorem reflects this
fact in a nice way. Remember that the words
“prior” and “posterior” are relative to the data
being assimilated. We can apply Bayes’s theo-
rem sequentially, to assimilate data piece by piece
(or in chunks, as we wish), but then we have to
recognize that at any point in this process Your
prior distribution should represent the informa-
tion that is available prior to the particular piece
of data that You are about to observe. This, of
course, is what You would have called Your pos-
terior distribution after observing the previous
piece of data. There is a nice phrase that sums
up this analysis: “Today’s posterior is tomorrow’s
prior.”4

Bayes Estimates and Other Inferences

The basic principle of Bayesian inference is
that all inferences are derived from Your pos-
terior distribution. The posterior density f (θ |x)
expresses all the information that You have about
θ after observing the data, and can itself be con-
sidered an inference, in the sense of being Your
answer to the question, “What do we now know
about θ?” For a single parameter, simply drawing
its posterior distribution, as in Figure 6.1, pro-
vides a clear visualization of that knowledge. It
is usual, however, to require more quantitative
inferences, such as point estimates, interval es-
timates, or tests of hypotheses. All of these are
derived, in the Bayesian framework, from the
posterior distribution.

A point estimate is a single value for θ that
represents in some sense a “best guess” in the
light of the data and Your prior information.

4It can be shown mathematically that Bayesian sequential up-
dating is consistent, in the sense that You will obtain the same
posterior distribution by assimilating all the data in one appli-
cation of Bayes’s theorem as You would obtain from applying
it sequentially with the same data broken into individual items
or blocks of data.

There are several possible choices, depending on
what kind of “best” value is required. The pos-
terior median is one kind of Bayesian estimate.
We can think of it as a central value, such that
the probability that θ is higher than this value
equals the probability that it is lower. Another
choice is the posterior mean, which is the ex-
pected value of θ . This is widely used, and is
usually understood when we talk about “Bayes
estimates.” Finally, the posterior mode is also
commonly used, representing the most probable
value.5

A Bayesian interval estimate is simply an in-
terval having a specified posterior probability.
For instance, a 90% interval is a range of val-
ues, say [a,b], such that P(a ≤ θ ≤ b |x) = 0.9.
The usual term for such an interval is a credible
interval.6 Bayesian hypothesis testing is particu-
larly straightforward: If You wish to decide, for
example, whether to accept the hypothesis that
θ is positive, You simply evaluate Your posterior
probability that it is true, P(θ > 0 |x).7

For example, in the case of the posterior distri-
bution in Figure 6.1, the median, mean, and mode
are, respectively, 0.263, 0.264, and 0.261, so the
differences between them are very small and it
would not matter in practice which we used. This
is because the posterior density is nearly symmet-
ric. In a skewed distribution, the differences be-
tween these point estimates will be larger. Next,
suppose that You require a 75% credible interval

5Informally, it might also be called the “most likely” value,
but this invites confusion with the frequentist “maximum like-
lihood estimator,” which is quite different. Strictly, for a con-
tinuous parameter θ , there is no most probable value since the
probability that θ takes any value precisely is zero. However,
the mode maximizes the probability that θ will be within a
small neighborhood of the estimate.
6Although this is a similar term to the frequentist “confidence
interval,” it is quite different and has a different interpretation;
see section “Implications for Inference.”
7Bayesian methods thereby separate the evaluation of how
probable a hypothesis is from any decision whether to “accept”
or “reject” it. The probability is a scientific judgment, but to
make an accept/reject decision You should take into account
the consequences of incorrect decisions. In some situations,
You might be willing to accept a hypothesis if its probability is
larger than 0.5, but in other situations You may require a much
larger probability. For instance, in British criminal law, the ac-
cused is judged guilty only if the hypothesis of guilt is proved
“beyond all reasonable doubt,” whereas in civil law a judgment
between two people is made “on the balance of probabilities.”
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for θ . There are many that we could use, rang-
ing from [0,0.289] (which takes the 75% lowest
possible values) to [0.239,1] (which uses the 75%
highest values). The shortest possible 75% cred-
ible interval is, however, [0.220,0.305].8 Finally,
if You wish to decide whether to accept the hy-
pothesis that θ < 0.25, the posterior probability
is P(θ < 0.25 |x) = 0.36. So it is more proba-
ble, according to Your posterior distribution, that
θ > 0.25, but there is still substantial uncertainty
about this hypothesis.9

Prior Distributions

The prior distribution is an intrinsic part of
the Bayesian approach and the most obvious fea-
ture that distinguishes it from the frequentist ap-
proach. Much of the controversy about which in-
ference paradigm is better has centered on the
prior distribution. We will discuss the main ar-
guments in this debate in the section Parameters
as Random Variables, but first we consider how
the prior distribution is specified in practice.

Elicitation

The most basic way to specify Your prior
distribution for θ is a process known as elicita-
tion. The word derives from the fact that elicita-
tion usually involves an external facilitator who
constructs the prior distribution to represent the
knowledge of the person whose prior information
is to be elicited. In practice, whereas the analysis
of the data, construction of the posterior distri-
bution, and derivation of appropriate inferences
might be carried out by a statistician, the per-
son whose prior information is to be elicited (that
we have called You) will typically not be knowl-
edgeable about statistics. We therefore consider
elicitation to be a dialogue between the facilita-
tor (someone with expertise in statistics and the

8The shortest credible interval for any given probability of
containing the true values is known as the highest density in-
terval, because it is found by including in the interval all those
values of θ having highest (posterior) density.
9However, Your prior probability P(θ < 0.25) = 0.09 has
been greatly increased by the data.

elicitation of expert knowledge) and the subject-
matter expert (You).10

In response to questions from the facilitator,
You will specify particular features of Your prior
knowledge. For instance, You might specify Your
prior median and a prior 80% credible interval.
The facilitator then constructs a prior distribu-
tion to represent Your stated beliefs. The skill
of the facilitator lies in deciding which features
of Your prior knowledge to ask about and how
to ask those questions without biasing the an-
swers. It is important to be aware of the con-
siderable research in psychology concerning the
ways that people respond to questions about un-
certainty (see, for instance, O’Hagan et al., 2006).

Elicitation is not a precise process. First, it
is difficult for You to think quantitatively about
Your prior knowledge, and we cannot expect
Your answers to be precise. For instance, if You
are asked to specify Your prior probability that
θ < 0.25 in the mobile phone example, You
might feel that θ is probably larger than 0.25, but
how probable? You might say P(θ < 0.25)= 0.1,
but if pressed by the facilitator You might be per-
fectly happy with any value between 0.07 and
0.15 for this probability. The second source of
imprecision is that You can only specify a rela-
tively small number of features of Your prior dis-
tribution, partly because time is always limited
and partly because the task becomes more com-
plex as more questions are asked. In choosing a
distribution to represent Your stated beliefs, the
facilitator is making an arbitrary choice, and in
reality there is a whole range of prior distribu-
tions that might fit Your statements equally well.

Because elicitation is imprecise, there is im-
precision in the posterior distribution, and in
inferences derived from it. It is important in prac-
tice to explore how robust any derived inferences
might be to perturbing the prior distribution.

Fortunately, this prior imprecision often does
not matter, because the posterior distribution is

10The separation of roles is not always necessary, and cer-
tainly You could elicit Your prior distribution by playing both
parts in the dialogue. Nevertheless, in situations where prior
information is substantial and the problem of sufficient im-
portance, the use of an experienced facilitator is advisable.
In some projects, the opinions of several experts might be
elicited, either individually or in a group.
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almost unaffected by varying the prior distribu-
tion over quite a wide range. This is the case
when the data are sufficiently strong. We have
seen that Bayes’s theorem synthesises the two
sources of information by giving more weight to
the stronger source. When the data are far more
informative than the prior distribution,11 the pos-
terior distribution is almost entirely determined
by the likelihood, and varying the prior distribu-
tion produces little effect. This is, therefore, when
the posterior inferences will be robust to impreci-
sion in the prior distribution.

Noninformative Priors

Another way to look at this is to say that
we can avoid the posterior distribution being
dependent on the prior if we make the prior in-
formation very weak. Prior distributions that ex-
press negligible prior knowledge have been given
a huge variety of names, but we will use here
the term “noninformative.”12 Several justifica-
tions have been proposed for considering such
prior distributions.

1. Those who like the elegance of the
Bayesian approach (with particular refer-
ence to its benefits over frequentist meth-
ods as discussed in the section Contrast
With Frequentist Inference), yet are con-
cerned about criticisms of the use of prior
information, see noninformative prior dis-
tributions as a way to achieve the Bayesian
benefits without the Bayesian prior.

2. To study the relationship between Bayesian
and frequentist methods, it can be useful
to formulate noninformative prior distribu-
tions, since this should bring the two ap-
proaches as close together as possible.

3. When prior information is genuinely weak
compared with the data, so that the poste-
rior distribution should not anyway be sen-

11We are using the term informative here in the sense of the
discussion of the triplot (Figure 6.1). We refer here specifi-
cally to the situation where the prior distribution is very much
broader and flatter than the likelihood.
12Some of the other names are “weak,” “reference,” “default,”
“vague,” “objective,” or “ignorance” priors.

sitive to the particular distribution that we
use, then a noninformative prior is a con-
venient choice that avoids the need to go
through a process of elicitation.

There has been a substantial amount of re-
search into defining noninformative priors for
various kinds of parameters in various models,
but this is a contentious topic (see Berger, 2006;
Goldstein, 2006; and discussions following those
articles). There is no consensus over which of
the competing recipes best represent prior “igno-
rance” in any given situation, and indeed many
scholars would argue that complete ignorance
never exists and there is no such thing as a totally
noninformative prior. Nevertheless, in most cases
the various noninformative priors that have been
proposed in the literature for any given problem
should lead to essentially the same posterior in-
ferences, provided the data are not themselves
weak.

The author’s view is that genuine, informative
prior distributions should be used wherever sub-
stantive prior information exists, but that when
prior information is truly weak relative to the
data then so-called noninformative prior distribu-
tions play a useful role in Bayesian inference (fol-
lowing the third justification above). In problems
with several unknown parameters, it is rare for
there to be useful prior information about all the
parameters, so it is sensible to make efforts to for-
mulate proper prior distributions for those param-
eters where genuine prior information exists, and
to place conventional noninformative prior distri-
butions on the others.

Data-Based Priors

Prior information often includes other data,
say y, separate from the particular data x being
analyzed. Then, in principle, we can say that “to-
day’s” prior distribution (before observing x) is
“yesterday’s” posterior distribution (after observ-
ing y). It might then be written f (θ |y) and could
be derived using Bayes’s theorem from “yes-
terday’s” likelihood f (y |θ ) and “yesterday’s”
prior f (θ ).

In practice, though, it is not simple to deal
with “prior data” in this way. First, the prob-
lem of specifying “today’s” prior distribution has
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simply been deferred to that of specifying “yes-
terday’s” prior, and it will generally be difficult
to think about what prior distribution would have
applied in the hypothetical state of knowledge
prior to observing y. Second, y often relates only
indirectly to θ . This is the case when prior in-
formation relates to knowledge of similar prob-
lems. For instance, if required to assess a prior
distribution for the efficacy θ of some new drug,
You may have prior experience of the perfor-
mance of similar drugs. To use such data formally
alongside x, it is necessary first to formulate its
relationship to θ in the form of “yesterday’s”
likelihood f (y |θ ) (e.g., by explicitly formulating
some assessment of similarity between the new
and old drugs). Such complications mean that it
is often no easier to make explicit use of prior
data than to elicit Your current prior distribution
(so incorporating y implicitly).

CONTRAST WITH
FREQUENTIST INFERENCE

Where appreciable prior information exists, per-
haps the most significant difference between
Bayesian and frequentist methods is the ability
of the Bayesian analysis to make use of that
additional information in the form of the prior
distribution. As a result, Bayesian methods will
typically produce stronger inferences from the
same data. Furthermore, the prior information al-
lows the Bayesian analysis to be more respon-
sive to the context of the data. However, the
prior distribution is also the focus of opposition
to Bayesian methods from adherents of the fre-
quentist philosophy. Frequentists regard its use as
unscientific, so do not believe that such stronger
or more responsive inferences can be obtained
legitimately.

Parameters as Random Variables

Although the use of a prior distribution does
distinguish Bayesian methods from frequentist
methods, we have seen that some users of
Bayesian ideas attempt to nullify the prior in-
formation by using noninformative priors. Even
where genuine prior distributions are employed,
they may have very little impact on the infer-

ences. A better defining characteristic for the
Bayesian approach is the willingness to treat un-
known parameters as random variables.

The Nature of Probability and Uncertainty

We can only have a posterior distribution if θ
is considered as a random variable. In frequentist
statistics, parameters cannot be random vari-
ables, and it is not legitimate to make probability
statements about them. This, more than whether
one feels discomfort with the use of prior infor-
mation, is what makes frequentist inference fun-
damentally different from Bayesian inference.13

Underlying this distinction is a still more fun-
damental difference over what probability means.
Frequentist inference is so called because it re-
lies on the frequency interpretation of probabil-
ity, so that every probability is defined as the
long run relative frequency with which events
of that type occur under repeated observation.
Probability statements cannot be made about pa-
rameters because they cannot meaningfully be
considered as repeatable. In any statistical prob-
lem, we have data that are generally sampled
from some population or data-generating process
that is repeatable. We can consider drawing sam-
ples indefinitely from such a process, and so x is
a random variable within the frequency formula-
tion, and its distribution f (x |θ ) is well defined
in terms of frequency probabilities.14 However,
θ represents the unknown features of that data-
generating process. They are fixed and specific
to this problem. θ is unique and cannot be con-
sidered part of a repeatable sequence, so we can-
not meaningfully assign frequency probabilities
to it.15

13In some problems, frequentist statistics makes use of “ran-
dom effects” formulations, in which some parameters in an
analogous “fixed effects” model become random variables.
However, the random effects are then not then treated as
parameters, and inference cannot be made about individual
random effects.
14Technically, in frequentist inference, because θ is not a ran-
dom variable we do not formally condition on its value, and
hence the notation f (x |θ ) is strictly incorrect. It is usual to
write it instead as f (x;θ ) or fθ (x).
15Even if we could conceive of a collection of data-generating
processes, the one under study is not randomly sampled from
that collection and inevitably has its own characteristics that
make it not comparable with the others.
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Philosophically, different kinds of uncertainty
are associated with x and θ . The data are sub-
ject to random variability, and the associated
uncertainty is termed aleatory (from the Latin
“alea” for a die). Parameters are not random
(in the everyday sense of this word), but they
are uncertain. The uncertainty in this case arises
from a lack of knowledge and is termed epis-
temic (from the Greek “episteme” for science or
knowledge).16 Frequency probability is only ap-
plicable to quantify aleatory uncertainties. In
contrast, the subjective or personal interpreta-
tion of probability defines Your probability for an
event as a measure of Your degree of belief in the
assertion that the event will occur. This definition
clearly applies to any uncertain event, whether
the uncertainty is epistemic or aleatory.17

The willingness to express uncertainty about
θ through probabilities, and to assign a prob-
ability distribution to θ either before or after
observing x, means that Bayesian inference is
intrinsically based on the subjective formulation
of probability.

Implications for Inference

Frequentist inference cannot make probability
statements about parameters, yet it often appears
to do just that.

Consider a hypothesis testing problem, where
the inference question is to decide whether to
accept the hypothesis H. We have seen that the
Bayesian approach to this is very simple: We
report the posterior probability that H is true.
This probability is meaningless in the frequency
framework, and the frequentist approach to hy-
pothesis testing is more convoluted. First, it is
necessary to choose a rule for testing, which
determines for any given data x whether to ac-
cept or reject H. Next, the behavior of this rule
must be evaluated in repeated sampling, to find

16The distinction between aleatory and epistemic uncertainty
is not always clearly delineated in practice. It is even arguable
that at a fundamental level true randomness does not exist.
Nevertheless, the distinction is useful in discussing the differ-
ence between Bayesian and frequentist approaches.
17In fact, Your uncertainty about the data x is both aleatory and
epistemic. Since the parameters of the data-generating process
have epistemic uncertainty, the uncertainty in x is more than
just the aleatory uncertainty induced by randomness.

out the probability α that H would be rejected
if it is actually true (the probability of “first
kind of error”). Finally, if x does indeed lead
to rejection of H then we report that H is “re-
jected at the 100α% level of significance.” Oth-
erwise it is “not rejected at the 100α% level of
significance.”18

Notice that the extra complexity of the fre-
quentist approach is necessary because we can
only talk of probabilities when they are associ-
ated with aleatory uncertainty. Hence, it is nec-
essary to consider all frequentist inferences as
instances of inference rules, whose properties are
determined by imagining them to be applied in
repeated sampling.

One problem with the frequentist formula-
tion is that it is rarely fully understood (even by
many practising statisticians, let alone by their
clients). When told that H is rejected at the 5%
level, this is almost universally interpreted as
saying that there is only a 5% chance that H is
true. Of course, this cannot be the correct inter-
pretation because it makes a probability state-
ment about the hypothesis (and hence about θ ).
Only a Bayesian analysis can make such a state-
ment. Yet frequentist inferences are invariably
misinterpreted in this way because they seem to
make a much simpler and more useful statement
(“the probability that H is true is 0.05”) than
they really do (“if H were true, then the proba-
bility that the data would fall in the prespecified
region in which they have been observed to fall
on this occasion is 0.05”).

Similarly, a frequentist confidence interval is
nearly always interpreted as a Bayesian credi-
ble interval. Thus, the statement that [1.2,4.7] is
a 95% confidence interval for some parameter
θ is almost invariably understood as saying that
there is a 95% chance that θ lies between 1.2
and 4.7. This cannot be correct because it is a
probability statement about θ . The correct inter-
pretation is: that a rule of inference has been ap-
plied which yields an interval estimate for θ , that
in repeated sampling the intervals constructed by

18There are actually two different versions of the frequentist
hypothesis test. This is the Neyman–Pearson form of signifi-
cance test. The Fisherian p-value requires a nested set of re-
jection regions to be defined, and then p is the α value of the
region for which the observed data x lie on the boundary.
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this rule contain θ with probability 0.95, and that
when applied to the particular data x this rule has
produced the interval [1.2,4.7]. The confidence
interval is generally interpreted as a credible in-
terval because the Bayesian statement is simpler
and more natural.

The Bayesian methods answer inference ques-
tions in direct and simple ways. The frequentist
inferences have more indirect and easily misun-
derstood interpretations.

Paradoxes in Frequentist Inference

There is much abstract and theoretical debate
about the merits of Bayesian versus frequentist
methods. In general, the Bayesian approach
is seen to be more philosophically consistent,
whereas the frequentist approach gives rise to
quite paradoxical properties. Rather than dwell in
detail on these, we present here just two related
instances where frequentist and Bayesian meth-
ods behave quite differently, and try to present
both sides of the argument in each case.

The Likelihood Principle

To illustrate the difference between Bayesian
and frequentist methods, consider again the ex-
ample of mobile phone usage while driving. We
supposed that the data comprised a survey of 100
people, in which 23 admitted to using the phone
while driving. The usual frequentist estimate of θ
in this situation is θ̂ = 23/100 = 0.23. However,
this presupposes that the survey size n = 100
was fixed and the observation is r = 23. If we
took repeated samples of 100 people and calcu-
lated θ̂ = r/100 every time, then on average these
estimates would equal the true value of θ ; this
is the frequentist estimation property known as
unbiasedness. Suppose, however, that the survey
was conducted differently, so that we kept sam-
pling until we obtained 23 people who claimed
to have used a mobile phone while driving in the
last year. Now r = 23 is fixed, and it is n = 100
that is random. If we repeatedly took samples,
in each case sampling until r = 23, and calcu-
lated θ̂ = 23/n in each case, then the values
we got would not average to θ . In this different
kind of sampling, the appropriate frequentist un-
biased estimator is θ ∗ = 22/(n−1), which in the

particular case that we observed of n = 100 yields
θ ∗ = 22/99 = 0.2222.

A Bayesian analysis of this problem would be
quite different. The posterior distribution would
be the same in both cases, so You would ob-
tain the same Bayesian inferences, including es-
timates, no matter which sampling method was
used.

Both frequentists and Bayesians regard this
example as favoring their approach. Frequentists
assert that if the data are obtained from differ-
ent sampling methods, then it is obvious that
they have different meaning and we should make
different inferences. The Bayesian argument is
that in both cases we have observed 23 people
out of 100 who have used their mobile phones
while driving, and knowing whether we fixed 23
or fixed 100 is irrelevant because this knowl-
edge in itself obviously conveys no information
about θ .

To add a further twist to this example, sup-
pose that the experiment were conducted in yet
another way, with the survey being continued
until we ran out of time, money, or energy to con-
tinue.19 Now neither r nor n is fixed. The frequen-
tist theory can have enormous trouble with such
a situation, because it may be almost impossible
to determine what repeated samples, conducted
under the same conditions, would look like. The
Bayesian theory has no such difficulty. It is obvi-
ous that the mechanism for determining the sam-
ple size is not itself informative about θ , and the
inference is again the same as if n were fixed at
100, or r at 23.

Formally, Bayesian inference adheres to the
Likelihood Principle, which in simple terms says
that inference should depend on the data but not
on what data we might have obtained; see Berger
and Wolpert (1988) for a much more detailed ex-
planation. Different sampling mechanisms lead
to different alternative samples. For instance, r =
23,n = 101 is possible if r is fixed (or if nei-
ther is fixed) but not if n is fixed at 100. Be-
cause frequentist methods are evaluated in terms
of repeated sampling, they do depend on the

19Many actual surveys are in reality conducted like this, even
though the scientists may subsequently report them as if the
sample size was predetermined!
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sampling mechanism. To adherents of the fre-
quentist philosophy, this is natural and unexcep-
tional. To Bayesians, the frequentist approach is
illogical in giving inferences that depend on fea-
tures of the experiment (such as whether n = 100
or r = 23 was predetermined) that do not in
themselves convey any information about the un-
known parameters.

Applying Inferences to Particular Data

In a similar way, frequentist inference de-
pends on the rule of inference having been
prespecified. Suppose in the mobile phone use
example (with fixed n = 100), we consider the
estimation rule θ+ = r/100 if r is an odd
number and θ+ = r/101 if r is an even number.
Now this rule is not unbiased, and indeed is bi-
ased downwards (tending to give estimates that
are too low). Given our actual observation, both
rules give the same estimate, 23/100 = 0.23. In
one case, however, the estimate results from ap-
plying an unbiased estimation rule, while in the
other it comes from a biased rule. So is the actual
estimate, 0.23, biased or unbiased? Unbiasedness
or biasedness is a property of the rule, and in
frequentist terms it does not make sense to ask
whether an estimate obtained from a particular
set of data is unbiased.

Perhaps a more convincing example can be
given in the case of a confidence interval. If we
are told that [1.2,4.7] is a 95% confidence in-
terval for θ , then we know that on 95% of the
occasions that this rule is used the calculated in-
terval will contain θ . It is now particularly com-
pelling to say that we should give a probability
of 0.95 to the interval containing θ on this oc-
casion. Admittedly, this is a Bayesian statement,
but what is wrong with this very natural transfer
of the 95% property from the rule to the instance?
The answer is that [1.2,4.7] could easily also be
obtained by applying some other interval estima-
tion rule that is, for instance, a 90% confidence
interval. So is the probability 95% or 90% that
[1.2,4.7] contains θ?

From the frequentist perspective, the answer
depends again on what might have been obtained
but was not, since different rules that give the
same inferences on the actual data x would give

different inferences on other data. Bayesian infer-
ences apply unambiguously to the particular data
that have been observed.

Subjectivity and Science

The most persistent criticism that is made of
Bayesian inference is that it is subjective. This
is undeniably true, since Bayesian methods are
based on the subjective formulation of probabil-
ity; the posterior distribution represents the be-
liefs of a particular person (You) about θ . To
people who were trained to think that statisti-
cal analysis of data must be based on scientific
principles, and that science is above all objec-
tive, this seems to provide a compelling reason
to reject the Bayesian approach. However, closer
examination shows—in the author’s opinion, at
least—that the criticism is vacuous because nei-
ther frequentist methods nor science itself is
objective.

It is certainly true that science aspires to
be objective, and avoids subjective judgments
wherever possible. But in every field of science
we find controversy and differences of opinion
over topics of current interest. The progress of
science is achieved through debate, the accu-
mulation of evidence and convergence upon ex-
planations and interpretations of the evidence.
Questions that may seem to be resolved in this
way can be reopened when new data throw an
accepted theory into doubt, or when somebody
interposes a new explanation or interpretation,
as witness the revolution in thinking that came
at the start of the twentieth century with relativ-
ity theory superseding the previously accepted
Newtonian physics. Consider any piece of re-
search that is published in some eminent scien-
tific journal. The authors will present their data
and the conclusions that they draw from those
data. The data themselves may be considered to
be objective, but the conclusions are not. The
authors will describe the process by which the
data were collected and describe their own in-
terpretation of those data as clearly as they can,
to convince the reader to accept their conclu-
sions. The conclusions may indeed be deemed
uncontroversial, but often their fellow scientists
will apply their own interpretations (and per-
haps reach different conclusions) or else reserve
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judgment until the issues have been debated
more or until more data are available. Objectiv-
ity in science is really a convergence of subjec-
tive opinion, and that agreement may be only
temporary.20

Subjectivity in frequentist statistics is equally
easy to see. In practice, two statisticians faced
with the same data will often reach different in-
ferences. This may be because they have cho-
sen to use different inference rules, for instance,
two different hypothesis tests. The choice of an
estimator, a test, or a confidence interval is one
source of subjectivity, and although in some sim-
ple problems there are universally agreed “best”
inferences this is rarely the case in more com-
plex analyses. A more common reason for reach-
ing different conclusions is that the statisticians
model the data differently. The effect of this is
that they obtain different likelihoods. From the
Bayesian perspective, this is entirely natural be-
cause all probabilities are subjective and the like-
lihood is no exception. But from the perspective
of a frequentist who criticizes the Bayesian sta-
tistician for being subjective, this is an embar-
rassment. It is this author’s contention that no
methods of statistics are objective, just as science
is not objective.

This is not to say that we should make a virtue
of subjectivity. Like science itself, a Bayesian
analysis aspires toward objectivity and attempts
to avoid those aspects of subjectivity that have
given a derogatory connotation to the word “sub-
jective.” Thus, probabilities may be subjective,
but they should not be affected by prejudice, su-
perstition, or wishful thinking.

Furthermore, Bayesian analysis reflects the
above view of the process of science perfectly.
It was explained in the section Prior Distribu-
tion how the prior distribution has less influence
if the data are strong. Thus, as more data are
collected, people who might have begun with
very different prior beliefs will find that their
posterior distributions converge. Eventually, dif-
ferences of prior opinion are overwhelmed by

20I have been told by senior scientists that personal judgment
does not play a role in their work, but they are wrong. What
makes these people leaders of their own fields is that their
opinions and judgments are esteemed by their fellows.

the accumulating evidence, which is precisely
the way that science progresses. Indeed, the
fact that Bayesian methods recognize prior opin-
ion is a positive benefit, because it allows us
to see when this convergence has taken place.
If the data are not strong enough to yield un-
controversial inferences, then this is an impor-
tant fact that is not apparent in any frequentist
analysis.21 Howson and Urbach (1993) present
a detailed argument in favor of Bayesian statis-
tics from the perspective of the philosophy of
science.

BAYESIAN STATISTICS TODAY

Modern Bayesian statistics is a rich and power-
ful framework in which to make inferences and
decisions. We consider here a few of the more
striking features of Bayesian statistics today.

The Growth of Bayesian Applications

Since about 1990, there has been a dramatic
growth in the use of Bayesian methods. In some
application areas today, a Bayesian approach
is almost a hallmark of leading-edge research.
These are often fields where data are scarce, or
have complex structures that are difficult to ana-
lyze, whereas frequentist methods are still dom-
inant in the more traditional application areas
of statistics. In the social sciences particularly,
there is more recognition of the role of judg-
ment in interpreting data, and there is less re-
sistance to the apparent subjectivity of Bayesian
methods.

For example, the relatively new field of health
economics is concerned with assessing the cost-
effectiveness of competing medical technologies
(such as alternative drugs, surgical interventions,
or vaccinations). Such assessments are typically
made by assembling evidence on the effects (both
positive and negative) of the treatments and the
costs incurred (for the treatments themselves and

21Notice, however, that the convergence of opinion relies on
all participants agreeing on the likelihood. This mirrors the
need for scientists to agree on the interpretation of data before
they can agree on the conclusions that can be drawn from
them.
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any other medical resources used). The result-
ing evidence base is complex, and inevitably
very weak in some areas. Bayesian methods are
acknowledged as essential to produce meaning-
ful statistical analyses in such problems. In con-
trast, frequentist methods are still the dominant
methodology in the more well-established field
of analyzing clinical trial data. Clinical trials
have traditionally produced high-quality, well-
structured data, and have been large enough to
ensure that prior information and preexisting
opinions would be overwhelmed by the trial ev-
idence. Here too, however, Bayesian methods
are beginning to become more attractive, partly
driven by the high cost of modern drug de-
velopment that has led to a desire for smaller
trials and more efficient use of all available
information.

In the following subsections, we look at some
of the factors that have played a part in stimulat-
ing this rapid growth in the uptake of Bayesian
methodology.

Bayesian Computation

Two distinct steps can be identified in the basic
Bayesian method:

1. Bayesian Modeling. Identify the unknown
parameters and the inference questions
about these parameters that are to be an-
swered. Construct the likelihood and the
prior distribution to represent the available
data and prior information.

2. Bayesian Analysis. Obtain the posterior
distribution and derive inferences.

We will consider Bayesian modeling in the
section One Coherent Framework for Thinking,
so concentrate here on the second step, Bayesian
analysis.

Until the advent of powerful computational
tools, Step 2 represented a major difficulty except
in very simple problems. To illustrate these diffi-
culties, first suppose we have a sample of data
from a normal distribution with unknown mean
μ and known variance σ2. The unknown param-
eter that we have generically denoted by θ is, in

this example, μ . The likelihood for this sample
can be written22

f (x |μ) ∝ exp
{
− n

2σ2 (μ− x̄)2
}

, (6.2)

where x̄ is the sample mean. Now suppose that
the prior distribution for μ is normal with mean
m and variance v, so that

f (μ) ∝ exp
{− 1

2v(μ−m)2} . (6.3)

This is an instance of what is called a conjugate
prior distribution, because it combines nicely
with the likelihood to produce a posterior distri-
bution that is very easy to analyze. In fact, the
combination of likelihood (6.2) and prior (6.3) is
easily shown to result in a posterior distribution
for μ that is also normal. Derivation of inferences
such as the posterior mean or credible intervals
is now simple. In this case, the whole Bayesian
analysis can be done analytically because the
posterior is found to have a well studied, standard
distributional form.

However, if the prior distribution is not nor-
mal, the posterior will typically no longer be so
simple. For instance, if the prior density has the
logistic form

f (μ) ∝ exp(pμ){1 + exp(μ)}−(p+q) ,

then the posterior will not have any standard form.
To derive any inference such as the posterior mean
or a credible interval will now require numerical
computation. Because there is only one parameter
in this problem, these calculations require only
numerical integration in one dimension, which is
straightforward. In the period from the birth of
modern Bayesian thinking in the 1950s to at least
the mid-1980s, Bayesian analysis was restricted
to situations in which conjugate prior distributions
were available, or where the number of parameters
was small enough for computation of posterior in-
ferences by numerical integration to be feasible.

22We have simplified the likelihood here by writing it as pro-
portional to the expression shown. That is, factors that do
not depend on the parameter μ have been dropped. We do
the same with the prior distribution in the next expression.
These are legitimate simplifications because Bayes’s theorem
says the posterior distribution is proportional to the product
of prior and likelihood, and this remains true after removing
any such constant factors in either term.



The Bayesian Approach to Statistics • 97

Problems that could be analyzed routinely by fre-
quentist methods, such as generalized linear mod-
els with many explanatory variables, were outside
the reach of Bayesian methods.

This changed with the development of the
computational technique known as Markov chain
Monte Carlo, universally abbreviated to MCMC,
so that we can now perform those computations
even in very complex, multiparameter situations.

MCMC is based on two conceptually very
simple ideas. The first is that of sampling-based
computation. Suppose that we wish to compute
the posterior mean of the parameter θ1, which is
the first element of the vector θ of, say, k param-
eters. Formally, this is

E(θ1 |x) =
∫

θ1 f (θ |x)dθ

and involves integrating over the whole k-
dimensional space of the parameter vector θ .23

If k is more than about 10, this is a very sub-
stantial computation using numerical integration.
However, imagine that we could take a sample of
N values from the posterior distribution f (θ |x).
Denote these by θ (1),θ (2), . . . ,θ (N). Then we
would in particular have a sample of values of
the first parameter θ1, obtained by taking the first
element in each of the vectors θ (i), i = 1,2, . . . ,N.
We could use the sample mean θ̄1 as an approxi-
mation to E(θ1 |x). If the sample were very large,
for instance N = 106, then we could regard this as
effectively an accurate computation of E(θ1 |x).

Direct sampling like this from the posterior is
sometimes feasible, even in some quite large and
complex problems, and is referred to as Monte
Carlo computation. However, in most serious ap-
plications of Bayesian analysis the posterior dis-
tribution is too complex and high dimensional for
this direct approach to be feasible. We then em-
ploy the second device, which is based on the
theory of Markov chains. We again obtain a se-
ries of vectors θ (1),θ (2), . . . ,θ (N), but these are
not sampled directly from f (θ |x) and they are
not independent. Instead, each θ (i) depends on

23We often think of this integration in two stages. First,
we integrate f (θ |x) over all elements of θ except θ1, a
(k− 1)-dimensional integration, to obtain the marginal den-
sity f (θ1 |x). Then we integrate with respect to θ1 to obtain
its posterior mean as E(θ1 |x) =

∫
θ1 f (θ1 |x) dθ1.

the previous θ (i−1) and is sampled from a distri-
bution g(θ (i) |θ (i−1)). This means that the θ (i)s
are a Markov chain. The conditional distribution
g, which is known as the transition kernel of the
chain, is chosen so that for sufficiently large i
the distribution of θ (i) converges to the posterior
distribution f (θ |x).24 Markov chain theory pro-
vides relatively simple criteria under which this
convergence will occur, and in practice there are
numerous ways of constructing a suitable transi-
tion kernel to sample from any desired posterior
distribution.25

The combination of the two ideas of sample-
based computation and the Markov chain is
MCMC. To go more deeply into the technique
of MCMC would require more than this chap-
ter, and indeed whole books have been written
about it (see, for instance, Gilks, Richardson, &
Spiegelhalter, 1995). Instead, we will just note
the following important points:

• Although convergence is guaranteed even-
tually, it is not possible to say how large a
sample must be taken before successive val-
ues can be considered to be sampled from
the posterior distribution. Judging when the
sample is large enough is something of an
art, although there is a growing body of di-
agnostics to help with this task.

• Successive points in the Markov chain are
correlated, and the strength of this correla-
tion is very important. A highly correlated
chain converges slowly and moves around
the parameter space slowly, so that a larger

24This is true no matter what the initial value θ (1) is. In simple
terms, the chain can be said to have converged when it has
“forgotten” where it started from.
25To understand MCMC, it is helpful to think first of simple
Monte Carlo sampling as, for example, shooting randomly
into the space of possible values of θ . Each shot is distrib-
uted according to the posterior distribution and successive
shots are independent. In contrast, MCMC starts at an arbi-
trary point θ (1), and then wanders around the space, each suc-
cessive value being a random move away from the previous
one. If the transition kernel is appropriately chosen, this wan-
dering point will make its way into the part of the θ space
with appreciable posterior density, and will spend more time
in regions with higher density and less in regions with lower
density, so that the collection of points behaves like a sample
from the posterior distribution.
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sample is needed to compute relevant infer-
ences accurately. Devising a chain that has
relatively low correlation is another task that
is something of an art.

The ability of MCMC to tackle extremely
complicated problems with very large number
of parameters is a major factor in the growth of
applied Bayesian statistics. As remarked above,
the practice of MCMC is still under rapid de-
velopment and is a skilled task. There is a
powerful software package available, known as
WinBUGS,26 but this also requires a relatively
sound knowledge of MCMC practice. As yet it
is not truly easy to use software for Bayesian
computation.

One Coherent Framework for Thinking

Another appealing feature of the Bayesian
approach is its conceptual simplicity and con-
sistency. In effect, a Bayesian analysis involves
only the formulation and manipulation of prob-
abilities. The process of building a Bayesian
model is all about formulating beliefs in terms
of probabilities, and it does not matter whether
these probabilities represent aleatory or epistemic
uncertainties. The second step of the Bayesian
method, which is the derivation of the poste-
rior distribution and inferences, is in principle
simply a matter of manipulating probability dis-
tributions. The key requirement for an applied
Bayesian statistician is to be able to think in
terms of probabilities formulating knowledge and
uncertainties.

The frequentist philosophy is different. Proba-
bilistic modeling is used to create the likelihood,
but the formulation and choice of inference rules
are based on an array of more or less ad hoc crite-
ria for what constitutes a good rule. The frequen-
tist statistician is free to propose new rules, and
unless they are demonstrably and uniformly infe-
rior to another rule (which can rarely be shown)
it is legitimate to use them.

This aspect of Bayesian inference as a co-
herent framework for thinking about uncertainty

26See http://www.mrc-bsu.cam.ac.uk/bugs.

emerges very clearly in the following example,
where there are no aleatory uncertainties at all.
Mathematical models are widely used in sci-
ence, engineering, economics, and other fields
to describe real-world processes, with a view
to understanding and predicting their behavior.
Such models are usually implemented in com-
puter programs, which can be very large and take
anything from a few seconds to many hours to
run. In practice, the user of such a model does
not require to run it just once, but wishes to con-
sider what outputs are predicted by the model
for a variety of settings of its inputs. In some
cases, the number of runs that would, in princi-
ple, be required is so large that it is impractical
to do so within any realistic time-span. Bayesian
methods have been developed to enable such
analyses to be done without physically running
the model for all the necessary input combina-
tions.27 The idea is to model uncertainty about
what outputs the model would produce at some
input settings for which the model has not actu-
ally been run. There is no aleatory uncertainty be-
cause the model itself is deterministic; running it
at any given inputs will always produce the same
outputs. However, there is clearly epistemic un-
certainty about what the outputs will be before
we actually run the model. Bayesian methodol-
ogy can model this uncertainty as if the relation-
ship between inputs and outputs was a random
function.

Design, Decision, and Prediction

We end this chapter by highlighting several
kinds of problems where a Bayesian approach is
more natural and powerful than frequentist meth-
ods. The design of experiments and observational
studies is obviously such an area, because before
we actually collect the data there is only prior
information. Frequentist methods must use prior
information, but do so in an informal and oblique
way. In a Bayesian approach, the prior informa-
tion is explicit and is used to identify optimal
designs.

Decision theory is a large topic. The most dif-
ficult decisions arise when there is uncertainty

27See O’Hagan (2006).
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about the consequences of our actions. The un-
certainty about consequences is invariably (at
least partially) epistemic and cannot be addressed
by frequentist methods. A Bayesian approach
is quite natural in this situation, and decision
makers rarely exhibit any resistance to the idea
that such uncertainties should, in principle, be
expressed as probabilities. Bayesian decision
theory chooses the optimal decision by maximiz-
ing the expectation of a utility function that rep-
resents the value of different consequences for
each possible decision. The expectation in ques-
tion is taken with respect to the uncertainty in the
consequences. The Bayesian development of op-
timal experimental designs is actually an instance
of Bayesian decision theory.

Finally, consider the prediction of future data.
Suppose that data on the efficacy of some med-
ical treatment in a sample of patients have been
obtained in a clinical trial, and a clinician wishes
to predict the response of new patients to this
treatment. This is another area where frequen-
tist methods have difficulty. The uncertainty in
future data is primarily epistemic. Frequentist ap-
proaches introduce aleatory uncertainty by re-
garding the new patient as randomly chosen from
the population of all potential patients, but there
is still epistemic uncertainty because, despite the
clinical trial data, there is still uncertainty about
the true mean efficacy of the treatment.

CONCLUSION

This chapter has tried to explain the essence of
the Bayesian approach to statistics, how it differs
from the frequentist approach and what advan-
tages have caused it to grow dramatically in us-
age since the late 1980s. The presentation has not
been completely impartial because the author has
been firmly committed to the Bayesian frame-
work for more than 30 years. It is also important
to recognize that within the community of users
and advocates of Bayesian methods there is a di-
versity of opinion on some issues that could not
be fully covered within this chapter. The reader
is advised to seek other opinions, to which end
there are recommendations for further reading at
the end of the chapter.
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